SELF-HEALING COATINGS WITH MULTI-LEVEL PROTECTION BASED ON ACTIVE NANOCONTAINERS

Mario Ferreira*", Mikhail Zheludkevich*

*University of Aveiro, CICECO, Ceramics and Glass Eng., Aveiro, Portugal "Instituto Superior Técnico, DEQB, Lisboa, Portugal

2009 U.S. Army Corrosion Summit

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington			
1. REPORT DATE FEB 2009		2. REPORT TYPE		3. DATES COVERED 00-00-2009 to 00-00-2009				
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER			
Self-Healing Coatings with Multi-Level Protection Based on Active Nanocontainers					5b. GRANT NUMBER			
Nanocontainers			5c. PROGRAM ELEMENT NUMBER					
6. AUTHOR(S)			5d. PROJECT NUMBER					
					5e. TASK NUMBER			
		5f. WORK UNIT NUMBER						
	ZATION NAME(S) AND AE co,CICECO, Ceram	` '	eering,Aveiro,	8. PERFORMING REPORT NUMB	G ORGANIZATION ER			
9. SPONSORING/MONITO	RING AGENCY NAME(S) A		10. SPONSOR/MONITOR'S ACRONYM(S)					
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited						
13. SUPPLEMENTARY NO 2009 U.S. Army Co	orrosion Summit, 3-	5 Feb, Clearwater I	Beach, FL					
14. ABSTRACT								
15. SUBJECT TERMS								
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF					
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	42	RESPONSIBLE PERSON			

Report Documentation Page

Form Approved OMB No. 0704-0188

Protective coatings on metallic substrates

- +Aesthetic properties
- **+Tailored surface properties**
- +Good barrier against corrosive species
- -Lack of self-healing

Passive + active
Coating + Active Healing Agent

+Combination of barrier and self-healing

Definition of Self-Healing

The term "self-healing" in materials science means self-recovery of the mechanical integrity and initial properties of the material after destructive actions of external environment or under influence of internal stresses.

Self-healing composite consisting:

- microencapsulated catalyst (yellow)
- phase-separated healing-agent droplets (white)
- •matrix (green)

B.S.H. Cho, H.M. Andersson, S.R. White, N.R. Sottos, P.V. Braun, Adv. Mater. 2006, 18,997-1000.

Self-Healing Protective Coatings

The classical understanding of self-healing is based on the complete recovery of the coating functionalities due to a real healing of the defect retrieving initial coating integrity

GFRP HGF+Re

coating

bohemite

[•]R.S. Trask, G.J. Williams, I.P.Bond, J. R. Soc. Interface. 2007, 4,363-371.

[•]T. Sugama, K. Gawlik, Mater. Lett. 2003, 57,4282-4290.

CORROSION SELF-HEALING

The hindering of the corrosion activity in a defect in a coating by any mechanism can be considered as corrosion self-healing

•Examples of negative effect of active agents

Active agent must be encapsulated in order to prevent its interaction with components of coatings!!!

Nano-encapsulation of corrosion inhibitors before addition to the coating

Possible Advantages

- Reduction of negative effect of the inhibitor on coating
- Prevention of inhibitor deactivation due to interaction with coating components
- Controllable release of inhibitor on demand

Types of Nanocontainers

- Oxide nanoparticles
- Porous nanostructured layers
- LbL constructed nanocontainers
- Halloysite nanocontainers
- LDH nanocontainers

In-situ formed oxide nanopartcles as reservoirs of corrosion inhibitors

Corrosion protection performance of nanocomposite films

without inhibitor

with inhibitor

Porous layer as nanostructured reservoir of corrosion inhibitor

•Structure of the nano-titania layer deposited on polished and etched alloy

•Etched allow

•Etched alloy + titania

The micelle-template approach can be used to obtain porous nanostructured titania pre-layer before hybrid film deposition

Porous layer as nanostructured reservoir of corrosion inhibitor

Evolution of pore resistance for different hybrid films

Use of nanostructured porous reservoir prevents degradation of sol-gel film due to introduction of inhibitor

Increase of low frequency impedance is originated from defect passivation

Two-layer system demonstrates promising results with signs of self-healing effect

LbL polyelectrolyte nanocontainers for inhibitor encapsulation

M.L.Zheludkevich, D.G.Shchukin, K.A.Yasakau, H.Möhwald, M.G.S. Ferreira, *Chemistry of Materials*, 19 (2007) 402-411 D.G.Shchukin, M.Zheludkevich, K.Yasakau, S.Lamaka, H.Möhwald, M.G.S.Ferreira, *Advanced Materials*, 18, 2006, 1672–1678.

Self-healing of an artificial defect

Suppression of the active corrosion processes demonstrates self-healing of artificial defect in sol-gel film doped with nanocontainers loaded with benzotriazole

M.L.Zheludkevich, D.G.Shchukin, K.A.Yasakau, H.Möhwald, M.G.S. Ferreira, *Chemistry of Materials*, 19 (2007) 402-411 D.G.Shchukin, M.Zheludkevich, K.Yasakau, S.Lamaka, H.Möhwald, M.G.S.Ferreira, *Advanced Materials*, 18, 2006, 1672–1678.

Mechanism of "smart" self-healing

Induced defect opens pathway for chloride ions

Corrosion processes start on the alloy surface

Cathodic reactions generate hydroxyls leading to local increase of pH:

$$2H_2O + 2e^- \rightarrow 2OH^- + H_2 \uparrow$$

$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$$

Raise of pH increases permeability of polyelectrolyte shell leading to release of inhibitor

M.L.Zheludkevich, D.G.Shchukin, K.A.Yasakau, H.Möhwald, M.G.S. Ferreira, *Chemistry of Materials*, 19 (2007) 402-411 D.G.Shchukin, M.Zheludkevich, K.Yasakau, S.Lamaka, H.Möhwald, M.G.S.Ferreira, *Advanced Materials*, 18, 2006, 1672–1678.

Halloysite as nanocontainers of corrosion inhibitor

Halloysite is defined as a two-layered aluminosilicate, which has a hollow tubular structure in the submicrometer range.

The halloysite tubules are very small with a typical size of less than 3.0 μ m long×0.3 μ m outer diameter and have an inner diameter of 10– 150 nm depending on the types.

SEM (A) and TEM (B) images of the halloysite nanotubes

Halloysite as nanocontainers of corrosion inhibitor

Fabrication of 2-mercaptobenzothiazole-loaded halloysite/polyelectrolyte nanocontainers

Halloysites nanocontainers with PE shell

2-mercaptobenzothiazole-loaded halloysite/polyelectrolyte nanocontainers

Nanocontainers in hybrid coating

anocontainers in hybrid coating

Corrosion protection properties of hybrid films doped with halloysite nanocontainers

Impedance spectra of undoped and halloysites doped sol-gel coatings after 2 week immersion test in 3% NaCl

LDH nanocontainers

Layered double hydroxide (LDH) powders:

- 1) Mg²⁺/Cr³⁺ (2:1)
- 2) Mg²⁺/Al³⁺ (2:1)
- 3) Zn²⁺/Al³⁺ (2:1)

Inhibiting anions:

- Mercaptobenzothiazole (MBT)
- Quinaldic acid (QA)
- Vanadate
- Tungstate
- Molibdate

Two ways of pigment preparation:

- direct synthesis (-formation of insoluble salts/complexes)
- •ion-exchange

Mg/Cr LDH pigments

Mg²⁺/Cr³⁺ (2:1), Cl

Mg²⁺/Cr³⁺ (2:1), MoO²⁻₄

Mg²⁺/Cr³⁺ (2:1), WO²⁻₄

Mg²⁺/Cr³⁺ (2:1), VO₃

EDS of initial LDH powders:

Composition of LDH powders in at. % by EDS

Powder	Mg	Cr	Мо	٧	W	0
Mg/Cr, Cl ⁻	4.73	2.37				91.90
Mg/Cr, MoO ₄ ²⁻	10.02	7.28	4.48	-		76.84
Mg/Cr, WO ₄ ²⁻	2.50	1.24			0.32	95.67
Mg/Cr, VO ₃ -	3.55	1.65		1.03		93.72

Mg/Cr LDH pigments

Photos of AA2024 samples after corrosion tests during 14 days (50 mg of LDH was added to 10 ml of 0.05 M NaCl)

0.05M NaCl

 $0.05M \text{ NaCl} + \text{Mg}^{2+}/\text{Cr}^{3+}, \text{Cl}^{-}$ $0.05M \text{ NaCl} + \text{Mg}^{2+}/\text{Cr}^{3+}, \text{MoO}_4^{2-}$

 $0.05M \text{ NaCl} + \text{Mg}^{2+}/\text{Cr}^{3+}, \text{WO}_4^{2-} \quad 0.05M \text{ NaCl} + \text{Mg}^{2+}/\text{Cr}^{3+}, \text{VO}_3^{-}$

Mg/Cr LDH pigments

Al in 0.05M NaCl

Al in 0.05M NaCl + Mg²⁺/Cr³⁺, MoO²⁻4

Al in 0.05M NaCl + Mg²⁺/Cr³⁺, VO₃

Mg-Al LDH pigments

d(003)

 $-Mg_2AI(OH)_6NO_3 - 0.8909 nm$

•Mg₂Al(OH)₆QA - 1.78 nm

•Mg₂Al(OH)₆MBT - 1.71 nm

The average size of LDH nanocrystallites:

•12 nm - Mg₂Al(OH)₆NO₃

•14 nm - Mg₂Al(OH)₆QA

•14 nm - Mg₂Al(OH)₆MBT

Mg-Al LDH pigments

Mg₂AI(OH)₆NO₃

Mg₂Al(OH)₆QA

Corrosion efficiency of LDH pigments

Zn-Al LDH pigments

X-ray diffraction patterns for Zn-Al LDHs

- •1 NO³⁻ d(003) 0.8892nm
- •2 VO³⁻ by direct synthesis d(003) 0.9262nm
- •3 VO³⁻ by anion exchange

Zn-Al LDH pigments

d(003)

 $Zn_2AI(OH)_6NO_3 - 0.8892 \text{ nm}$

Zn₂Al(OH)₆MBT - 1.71 nm

Release of vanadate from LDH pigments

Concentration of released vanadium vs. time plots for Zn₂Al(OH)₆VO₃ LDH in 0.5 M NaCl solutions (200 mg LDH per 25 ml of solution).

Release of inhibitors from LDH pigments

- LDH pigments demonstrate fast release-response
- ·Release of inhibitor is triggered by chloride ions

Corrosion efficiency of LDH pigments

 $Mg_2AI(OH)_6VO_3 + 0.05 M NaCI$

Zn₂Al(OH)₆VO₃ (direct)+ 0.05 M NaCl

o2 weeks

Zn₂Al(OH)₆VO₃ (exch.)+ 0.05 M NaCl

0.05 M NaCl

vanadate Zn-Al LDH

960 h of filiform corrosion tests

results of filiform corrosion tests

Sample	960 h		336 h		
	Max Filament length [mm]	Amount M1M5	Max Filament length [mm]	Amount M1M5	
Zn ₂ AIVO ₃ LDH - 1	1,6	M3	1,0	M2	
Zn ₂ AIVO ₃ LDH - 2	2,0	M3	1,0	M2	
Undoped - 1	2,3	M3-4	1,4	M2	
Undoped - 2	2,5	M3	1,2	M3	
Chromate - 1	1,6	M3	0,7	M3	
Chromate - 2	1,9	M3	0,8	M3	

Aerospace coatings with LDH nanocontainers of organic inhibitors

MULTI-LEVEL ACTIVE PROTECTION

- Active feed-back of the coatings depends on the internal state of the coating system and the external environmental conditions
- Different levels of active protection are working as response to different impacts

2nd and 4th level: water displacement + corrosion inhibition

Capsules of water displacing agent (diisopropylnaphthaline) and corrosion inhibitor (MBT) produced by microemulsion interfacial polymerization.

Conventional coating system New coating system a) b) Top Coat Capsules Top Coat Cr(VI) pigments Primer Primer Anodic film Sol-gel 10 µm

Self-healing of defects (2nd + 4th levels)

Self-healing of defects (2nd + 4th levels)

Conclusions

- ✓ Introduction of the inhibitor in the form of nanocontainers instead of the direct addition to the sol-gel matrix prevents its interaction with components of the coating, which can negatively influence the barrier properties of the hybrid film and lead to the deactivation of the inhibitor;
- ✓ Several new approaches of corrosion inhibitor delivery on demand are proposed conferring intelligent self-healing ability to the protective films.
- ✓ "Smart" nanoreservoirs of corrosion inhibitors are produced using polyelectrolyte shells assembled by LbL approach. This containers are pH-sensitive providing release of corrosion inhibitor on demand;
- ✓ Nanocontainers of corrosion inhibitors based on LDH nanopigments are developed demonstrating effective corrosion protection and self-healing ability;
- ✓ New concept of multilevel anticorrosion system based on active nanocontainers for coatings is proposed.

Acknowledgements

This work is supported by IP "MULTIPROTECT" Sixth Framework
Program Contract N11783-2
and by IP "MUST" Seventh Framework Program

Financial support from the FCT projects (contract # POCI/CTM/59234/2004 and PTDC/CTM/65632/2006) and GRICES-CAPES / CRICES-DAAD collaboration programs is gratefully acknowledged.

•Thankyou for attention!